Emergence of flat bands and ferromagnetic fluctuations via orbital-selective electron correlations in Mn-based kagome metal

Author:

Samanta SubhasisORCID,Park Hwiwoo,Lee Chanhyeon,Jeon Sungmin,Cui Hengbo,Yao Yong-XinORCID,Hwang JungseekORCID,Choi Kwang-YongORCID,Kim Heung-SikORCID

Abstract

AbstractKagome lattice has been actively studied for the possible realization of frustration-induced two-dimensional flat bands and a number of correlation-induced phases. Currently, the search for kagome systems with a nearly dispersionless flat band close to the Fermi level is ongoing. Here, by combining theoretical and experimental tools, we present Sc3Mn3Al7Si5 as a novel realization of correlation-induced almost-flat bands in the kagome lattice in the vicinity of the Fermi level. Our magnetic susceptibility, 27Al nuclear magnetic resonance, transport, and optical conductivity measurements provide signatures of a correlated metallic phase with tantalizing ferromagnetic instability. Our dynamical mean-field calculations suggest that such ferromagnetic instability observed originates from the formation of nearly flat dispersions close to the Fermi level, where electron correlations induce strong orbital-selective renormalization and manifestation of the kagome-frustrated bands. In addition, a significant negative magnetoresistance signal is observed, which can be attributed to the suppression of flat-band-induced ferromagnetic fluctuation, which further supports the formation of flat bands in this compound. These findings broaden a new prospect to harness correlated topological phases via multiorbital correlations in 3d-based kagome systems.

Funder

National Research Foundation of Korea

Korea Institute of Science and Technology Information

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Reference88 articles.

1. Leykam, D., Andreanov, A. & Flach, S. Artificial flat band systems: from lattice models to experiments. Adv. Phys.: X 3, 1473052 (2018).

2. Rhim, J.-W. & Yang, B.-J. Singular flat bands. Adv. Phys.: X 6, 1901606 (2021).

3. Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).

4. Xie, Y. et al. Fractional Chern insulators in magic-angle twisted bilayer graphene. Nature 600, 439 (2021).

5. Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3