Abstract
AbstractThe electrochemical carbon dioxide reduction reaction (CO2RR) is an attractive approach for mitigating CO2 emissions and generating value-added products. Consequently, discovery of promising CO2RR catalysts has become a crucial task, and machine learning (ML) has been utilized to accelerate catalyst discovery. However, current ML approaches are limited to exploring narrow chemical spaces and provide only fragmentary catalytic activity, even though CO2RR produces various chemicals. Here, by merging pre-developed ML model and a CO2RR selectivity map, we establish high-throughput virtual screening strategy to suggest active and selective catalysts for CO2RR without being limited to a database. Further, this strategy can provide guidance on stoichiometry and morphology of the catalyst to researchers. We predict the activity and selectivity of 465 metallic catalysts toward four expected reaction products. During this process, we discover previously unreported and promising behavior of Cu-Ga and Cu-Pd alloys. These findings are then validated through experimental methods.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献