Landslide topology uncovers failure movements

Author:

Bhuyan KushanavORCID,Rana KamalORCID,Ferrer Joaquin V.ORCID,Cotton Fabrice,Ozturk UgurORCID,Catani Filippo,Malik NishantORCID

Abstract

AbstractThe death toll and monetary damages from landslides continue to rise despite advancements in predictive modeling. These models’ performances are limited as landslide databases used in developing them often miss crucial information, e.g., underlying movement types. This study introduces a method of discerning landslide movements, such as slides, flows, and falls, by analyzing landslides’ 3D shapes. By examining landslide topological properties, we discover distinct patterns in their morphology, indicating different movements including complex ones with multiple coupled movements. We achieve 80-94% accuracy by applying topological properties in identifying landslide movements across diverse geographical and climatic regions, including Italy, the US Pacific Northwest, Denmark, Turkey, and Wenchuan in China. Furthermore, we demonstrate a real-world application on undocumented datasets from Wenchuan. Our work introduces a paradigm for studying landslide shapes to understand their underlying movements through the lens of landslide topology, which could aid landslide predictive models and risk evaluations.

Publisher

Springer Science and Business Media LLC

Reference76 articles.

1. Klose, M. Landslide Databases as Tools for Integrated Assessment of Landslide Risk (Springer, 2015).

2. Froude, M. J. & Petley, D. N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 18, 2161–2181 (2018).

3. ReliefWeb. Colombia—Landslide (IDEAM, NOAA-CPC, Media) (ECHO Daily Flash of 15 January 2024).

4. Morales, N. J. & Baum, B. Floods, landslides kill at least 20 people in southern Philippines.

5. VOA News. Death Toll from Landslide in Southwestern China at 20. Voice of America News.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An ensemble neural network approach for space–time landslide predictive modelling;International Journal of Applied Earth Observation and Geoinformation;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3