Abstract
AbstractThe reaction of CO2 with H2O to form bicarbonate (HCO3−) and H+ controls sperm motility and fertilization via HCO3−-stimulated cAMP synthesis. A complex network of signaling proteins participates in this reaction. Here, we identify key players that regulate intracellular pH (pHi) and HCO3− in human sperm by quantitative mass spectrometry (MS) and kinetic patch-clamp fluorometry. The resting pHi is set by amiloride-sensitive Na+/H+ exchange. The sperm-specific putative Na+/H+ exchanger SLC9C1, unlike its sea urchin homologue, is not gated by voltage or cAMP. Transporters and channels implied in HCO3− transport are not detected, and may be present at copy numbers < 10 molecules/sperm cell. Instead, HCO3− is produced by diffusion of CO2 into cells and readjustment of the CO2/HCO3−/H+ equilibrium. The proton channel Hv1 may serve as a unidirectional valve that blunts the acidification ensuing from HCO3− synthesis. This work provides a new framework for the study of male infertility.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference109 articles.
1. De Jonge, C. Biological basis for human capacitation-revisited. Hum. Reprod. Update 23, 289–299 (2017).
2. Puga Molina, L. C. et al. Molecular basis of human sperm capacitation. Front. Cell Dev. Biol. 6, 72 (2018).
3. Suarez, S. S. Control of hyperactivation in sperm. Hum. Reprod. Update 14, 647–657 (2008).
4. Nishigaki, T. et al. Intracellular pH in sperm physiology. Biochem. Biophys. Res. Commun. 450, 1149–1158 (2014).
5. Wachten, D., Jikeli, J. F. & Kaupp, U. B. Sperm sensory signaling. Cold Spring Harb. Perspect. Biol. 9, a028225 (2017).
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献