Abstract
AbstractTwo-dimensional (2D) membranes are emerging candidates for osmotic energy conversion. However, the trade-off between ion selectivity and conductivity remains the key bottleneck. Here we demonstrate a fully crystalline imine-based 2D polymer (2DPI) membrane capable of combining excellent ionic conductivity and high selectivity for osmotic energy conversion. The 2DPI can preferentially transport cations with Na+ selectivity coefficient of 0.98 (Na+/Cl− selectivity ratio ~84) and K+ selectivity coefficient of 0.93 (K+/Cl− ratio ~29). Moreover, the nanometer-scale thickness (~70 nm) generates a substantially high ionic flux, contributing to a record power density of up to ~53 W m−2, which is superior to most of nanoporous 2D membranes (0.8~35 W m−2). Density functional theory unveils that the oxygen and imine nitrogen can both function as the active sites depending on the ionization state of hydroxyl groups, and the enhanced interaction of Na+ versus K+ with 2DPI plays a significant role in directing the ion selectivity.
Funder
EC | Horizon 2020 Framework Programme
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献