Molecular insight into the initial hydration of tricalcium aluminate

Author:

Ming XingORCID,Si Wen,Yu Qinglu,Sun Zhaoyang,Qiu Guotao,Cao MingliORCID,Li YunjianORCID,Li ZongjinORCID

Abstract

AbstractPortland cement (PC) is ubiquitously used in construction for centuries, yet the elucidation of its early-age hydration remains a challenge. Understanding the initial hydration progress of tricalcium aluminate (C3A) at molecular scale is thus crucial for tackling this challenge as it exhibits a proclivity for early-stage hydration and plays a pivotal role in structural build-up of cement colloids. Herein, we implement a series of ab-initio calculations to probe the intricate molecular interactions of C3A during its initial hydration process. The C3A surface exhibits remarkable chemical activity in promoting water dissociation, which in turn facilitates the gradual desorption of Ca ions through a metal-proton exchange reaction. The dissolution pathways and free energies of these Ca ions follow the ligand-exchange mechanism with multiple sequential reactions to form the ultimate products where Ca ions adopt fivefold or sixfold coordination. Finally, these Ca complexes reprecipitate on the remaining Al-rich layer through the interface-coupled dissolution-reprecipitation mechanism, demonstrating dynamically stable inner-sphere adsorption states. The above results are helpful in unmasking the early-age hydration of PC and advancing the rational design of cement-based materials through the bottom-up approach.

Funder

Fundo para o Desenvolvimento das Ciências e da Tecnologia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3