Abstract
AbstractRecent advances in wavefront shaping have enabled complex classes of Structured Light which carry spin and orbital angular momentum, offering new tools for light-matter interaction, communications, and imaging. Controlling both components of angular momentum along the propagation direction can potentially extend such applications to 3D. However, beams of this kind have previously been realized using bench-top setups, requiring multiple interaction with light of a fixed input polarization, thus impeding their widespread applications. Here, we introduce two classes of metasurfaces that lift these constraints, namely: i) polarization-switchable plates that couple any pair of orthogonal polarizations to two vortices in which the magnitude and/or sense of vorticity vary locally with propagation, and ii) versatile plates that can structure both components of angular momentum, spin and orbital, independently, along the optical path while operating on incident light of any polarization. Compact and integrated devices of this type can advance light-matter interaction and imaging and may enable applications that are not accessible via other wavefront shaping tools.
Funder
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada
National Science Foundation
United States Department of Defense | United States Navy | Office of Naval Research
United States Department of Defense | United States Air Force | AFMC | Air Force Office of Scientific Research
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献