Single-zinc vacancy unlocks high-rate H2O2 electrosynthesis from mixed dioxygen beyond Le Chatelier principle

Author:

Huang Qi,Xia Baokai,Li Ming,Guan Hongxin,Antonietti MarkusORCID,Chen ShengORCID

Abstract

AbstractLe Chatelier’s principle is a basic rule in textbook defining the correlations of reaction activities and specific system parameters (like concentrations), serving as the guideline for regulating chemical/catalytic systems. Here we report a model system breaking this constraint in O2 electroreduction in mixed dioxygen. We unravel the central role of creating single-zinc vacancies in a crystal structure that leads to enzyme-like binding of the catalyst with enhanced selectivity to O2, shifting the reaction pathway from Langmuir-Hinshelwood to an upgraded triple-phase Eley-Rideal mechanism. The model system shows minute activity alteration of H2O2 yields (25.89~24.99 mol gcat−1 h−1) and Faradaic efficiencies (92.5%~89.3%) in the O2 levels of 100%~21% at the current density of 50~300 mA cm−2, which apparently violate macroscopic Le Chatelier’s reaction kinetics. A standalone prototype device is built for high-rate H2O2 production from atmospheric air, achieving the highest Faradaic efficiencies of 87.8% at 320 mA cm−2, overtaking the state-of-the-art catalysts and approaching the theoretical limit for direct air electrolysis (~345.8 mA cm−2). Further techno-economics analyses display the use of atmospheric air feedstock affording 21.7% better economics as comparison to high-purity O2, achieving the lowest H2O2 capital cost of 0.3 $ Kg−1. Given the recent surge of demonstrations on tailoring chemical/catalytic systems based on the Le Chatelier’s principle, the present finding would have general implications, allowing for leveraging systems “beyond” this classical rule.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3