Abstract
AbstractThe mechanisms of permeability and friction evolution in a natural fault are investigated in situ. During three fluid injection experiments at different places in a fault zone, we measured simultaneously the fluid pressure, fault displacements and seismic activity. Changes in fault permeability and friction are then estimated concurrently. Results show that fault permeability increases up to 1.58 order of magnitude as a result of reducing effective normal stress and cumulative dilatant slip, and 19-to-60.8% of the enhancement occurs without seismic emissions. When modeling the fault displacement, we found that a rate-and-state friction and a permeability dependent on both slip and slip velocity together reasonably fit the fault-parallel and fault-normal displacements. This leads to the conclusion that the transient evolution of fault permeability and friction caused by a pressure perturbation exerts a potentially dominant control on fault stability during fluid flow.
Funder
Agence Nationale de la Recherche
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献