Steering from electrochemical denitrification to ammonia synthesis

Author:

Li Huan,Long Jun,Jing Huijuan,Xiao JianpingORCID

Abstract

AbstractThe removal of nitric oxide is an important environmental issue, as well as a necessary prerequisite for achieving high efficiency of CO2 electroreduction. To this end, the electrocatalytic denitrification is a sustainable route. Herein, we employ reaction phase diagram to analyze the evolution of reaction mechanisms over varying catalysts and study the potential/pH effects over Pd and Cu. We find the low N2 selectivity compared to N2O production, consistent with a set of experiments, is limited fundamentally by two factors. The N2OH* binding is relatively weak over transition metals, resulting in the low rate of as-produced N2O* protonation. The strong correlation of OH* and O* binding energies limits the route of N2O* dissociation. Although the experimental conditions of varying potential, pH and NO pressures can tune the selectivity slightly, which are insufficient to promote N2 selectivity beyond N2O and NH3. A possible solution is to design catalysts with exceptions to break the scaling characters of energies. Alternatively, we propose a reverse route with the target of decentralized ammonia synthesis.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3