Strain-tunable Dirac semimetal phase transition and emergent superconductivity in a borophane

Author:

Zhong ChengyongORCID,Li Xuelian,Yu PengORCID

Abstract

AbstractA two-dimensional (2D) Dirac semimetal with concomitant superconductivity has been long sought but rarely reported. It is believed that light-element materials have the potential to realize this goal owing to their intrinsic lightweight and metallicity. Here, based on the recently synthesized β12 hydrogenated borophene, we investigate its counterpart named β12-B5H3. Our first-principles calculations suggest it has good stability. β12-B5H3 is a scarce Dirac semimetal demonstrating a strain-tunable phase transition from three Dirac cones to a single Dirac cone. Additionally, β12-B5H3 is also a superior phonon-mediated superconductor with a superconducting critical temperature of 32.4 K and can be further boosted to 42 K under external strain. The concurrence of Dirac fermions and superconductivity, supplemented with dual tunabilities, reveals β12-B5H3 is an attractive platform to study either quantum phase transition in 2D Dirac semimetal or the superconductivity or the exotic physics brought about by their interplay.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3