Author:
Thalabard Simon,Bec Jérémie,Mailybaev Alexei A.
Abstract
AbstractThe butterfly effect is today commonly identified with the sensitive dependence of deterministic chaotic systems upon initial conditions. However, this is only one facet of the notion of unpredictability pioneered by Lorenz, who actually predicted that multiscale fluid flows could spontaneously lose their deterministic nature and become intrinsically random. This effect, which is radically different from chaos, have remained out of reach for detailed physical observations. Here we show that this scenario is inherent to the elementary Kelvin–Helmholtz hydrodynamical instability of an initially singular shear layer. We moreover provide evidence that the resulting macroscopic flow displays universal statistical properties that are triggered by, but independent of specific physical properties at micro-scales. This spontaneous stochasticity is interpreted as an Eulerian counterpart to Richardson’s relative dispersion of Lagrangian particles, giving substance to the intrinsic nature of randomness in turbulence.
Funder
Brazilian-French Network in Mathematics
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献