Higher-order non-Markovian social contagions in simplicial complexes

Author:

Lin Zhaohua,Han LileiORCID,Feng MiORCID,Liu YingORCID,Tang MingORCID

Abstract

AbstractHigher-order structures such as simplicial complexes are ubiquitous in numerous real-world networks. Empirical evidence reveals that interactions among nodes occur not only through edges but also through higher-dimensional simplicial structures such as triangles. Nevertheless, classic models such as the threshold model fail to capture group interactions within these higher-order structures. In this paper, we propose a higher-order non-Markovian social contagion model, considering both higher-order interactions and the non-Markovian characteristics of real-world spreading processes. We develop a mean-field theory to describe its evolutionary dynamics. Simulation results reveal that the theory is capable of predicting the steady state of the model. Our theoretical analyses indicate that there is an equivalence between the higher-order non-Markovian and the higher-order Markovian social contagions. Besides, we find that non-Markovian recovery can boost the system resilience to withstand a large-scale infection or a small-scale infection under different conditions. This work deepens our understanding of the behaviors of higher-order non-Markovian social contagions in the real world.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3