Abstract
AbstractRecent advancements in developing metahyperbolic surfaces through substrate patterning have enabled the realization of highly-directional hyperbolic surface plasmons, but the feasibility of reproducing the same properties in natural hyperbolic two-dimensional (2D) materials is still unexplored. In this study, we expand the possibility of natural 2D materials in achieving electromagnetic scenarios akin to those observed in metahyperbolic surfaces. Natural hyperbolic 2D materials provide inherent advantages for simplicity, predictability, and lower losses compared to meta-surfaces. By employing first-principles calculations, we find that realistic 2D material, specifically the RuOCl2 monolayer, are suitable alternatives to metahyperbolic surfaces. Indeed, RuOCl2 monolayer sustains carrier-density-independent and broadband low-loss hyperbolic responses across the terahertz to ultraviolet spectral range, owning to the highly-anisotropic electronic band structures characterized by quasi-one-dimensional electron gas. These findings shed light on the integration of hyperbolicity in natural 2D materials, opening new avenues for the design and development of optoelectronic devices and nanoscale imaging systems.
Funder
National Natural Science Foundation of China
Taishan Scholar Program of Shandong Province
Natural Science Foundation of Shandong Province
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献