Abstract
AbstractThe interactions between the components of many real-world systems are best modelled by networks with multiple layers. Different theories have been proposed to explain how multilayered connections affect the linear stability of synchronization in dynamical systems. However, the resulting equations are computationally expensive, and therefore difficult, if not impossible, to solve for large systems. To bridge this gap, we develop a mean-field theory of synchronization for networks with multiple interaction layers. By assuming quasi-identical layers, we obtain accurate assessments of synchronization stability that are comparable with the exact results. In fact, the accuracy of our theory remains high even for networks with very dissimilar layers, thus posing a general question about the mean-field nature of synchronization stability in multilayer networks. Moreover, the computational complexity of our approach is only quadratic in the number of nodes, thereby allowing the study of systems whose investigation was thus far precluded.
Funder
RCUK | Medical Research Council
Gobierno de Aragón
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献