A real-world study of wearable sensors in Parkinson’s disease

Author:

Adams Jamie L.ORCID,Dinesh KarthikORCID,Snyder Christopher W.,Xiong Mulin,Tarolli Christopher G.,Sharma Saloni,Dorsey E. RayORCID,Sharma GauravORCID

Abstract

AbstractMost wearable sensor studies in Parkinson’s disease have been conducted in the clinic and thus may not be a true representation of everyday symptoms and symptom variation. Our goal was to measure activity, gait, and tremor using wearable sensors inside and outside the clinic. In this observational study, we assessed motor features using wearable sensors developed by MC10, Inc. Participants wore five sensors, one on each limb and on the trunk, during an in-person clinic visit and for two days thereafter. Using the accelerometer data from the sensors, activity states (lying, sitting, standing, walking) were determined and steps per day were also computed by aggregating over 2 s walking intervals. For non-walking periods, tremor durations were identified that had a characteristic frequency between 3 and 10 Hz. We analyzed data from 17 individuals with Parkinson’s disease and 17 age-matched controls over an average 45.4 h of sensor wear. Individuals with Parkinson’s walked significantly less (median [inter-quartile range]: 4980 [2835–7163] steps/day) than controls (7367 [5106–8928] steps/day; P = 0.04). Tremor was present for 1.6 [0.4–5.9] hours (median [range]) per day in most-affected hands (MDS-UPDRS 3.17a or 3.17b = 1–4) of individuals with Parkinson’s, which was significantly higher than the 0.5 [0.3–2.3] hours per day in less-affected hands (MDS-UPDRS 3.17a or 3.17b = 0). These results, which require replication in larger cohorts, advance our understanding of the manifestations of Parkinson’s in real-world settings.

Funder

U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3