Balance response to levodopa predicts balance improvement after bilateral subthalamic nucleus deep brain stimulation in Parkinson’s disease

Author:

Yin ZixiaoORCID,Bai Yutong,Zou Liangying,Zhang Xin,Wang Huimin,Gao Dongmei,Qin Guofan,Ma Ruoyu,Zhang Kai,Meng Fangang,Jiang YinORCID,Yang AnchaoORCID,Zhang JianguoORCID

Abstract

Abstract The effect of subthalamic nucleus deep brain stimulation (STN-DBS) on balance function in patients with Parkinson’s disease (PD) and the potential outcome predictive factors remains unclear. We retrospectively included 261 PD patients who underwent STN-DBS and finished the 1-month follow-up (M1) assessment in the explorative set for identifying postoperative balance change predictors, and 111 patients who finished both the M1 and 12-month follow-up (M12) assessment in the validation set for verifying the identified factors. Motor and balance improvement were evaluated through the UPDRS-III and the Berg balance scale (BBS) and pull test (PT), respectively. Candidate predictors of balance improvement included age, disease duration, motor subtypes, baseline severity of PD, cognitive status, motor and balance response to levodopa, and stimulation parameters. In the off-medication condition, STN-DBS significantly improved BBS and PT performance in both the M1 and M12, in both datasets. While in the on-medication condition, no significant balance improvement was observed. Higher preoperative BBS response to levodopa was significantly associated with larger postoperative off-medication, but not on-medication, BBS (p < 0.001) and PT (p < 0.001) improvement in both the M1 and M12. BBS subitems 8, 9, 11, 13, and 14 were the major contributors to the prediction of balance improvement after STN-DBS. STN-DBS improves short-term off-medication, but not on-medication, balance function assessed through BBS and PT. Preoperative BBS response to levodopa best predicts postoperative off-medication balance improvement. For patients who manifested severe balance problems, a levodopa challenge test on BBS or the short version of BBS is recommended.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3