White matter and nigral alterations in multiple system atrophy-parkinsonian type

Author:

Ogawa TakashiORCID,Hatano TakuORCID,Kamagata Koji,Andica ChristinaORCID,Takeshige-Amano Haruka,Uchida Wataru,Kamiyama Daiki,Shimo Yasushi,Oyama Genko,Umemura Atsushi,Iwamuro Hirokazu,Ito Masanobu,Hori Masaaki,Aoki ShigekiORCID,Hattori Nobutaka

Abstract

AbstractMultiple system atrophy (MSA) is classified into two main types: parkinsonian and cerebellar ataxia with oligodendrogliopathy. We examined microstructural alterations in the white matter and the substantia nigra pars compacta (SNc) of patients with MSA of parkinsonian type (MSA-P) using multishell diffusion magnetic resonance imaging (dMRI) and myelin sensitive imaging techniques. Age- and sex-matched patients with MSA-P (n = 21, n = 10 first and second cohorts, respectively), Parkinson’s disease patients (n = 19, 17), and healthy controls (n = 20, 24) were enrolled. Magnetization transfer saturation imaging (MT-sat) and dMRI were obtained using 3-T MRI. Measurements obtained from diffusion tensor imaging (DTI), free-water elimination DTI, neurite orientation dispersion and density imaging (NODDI), and MT-sat were compared between groups. Tract-based spatial statistics analysis revealed differences in diffuse white matter alterations in the free-water fractional volume, myelin volume fraction, and intracellular volume fraction between the patients with MSA-P and healthy controls, whereas free-water and MT-sat differences were limited to the middle cerebellar peduncle in comparison with those with Parkinson’s disease. Region-of-interest analysis of white matter and SNc revealed significant differences in the middle and inferior cerebellar peduncle, pontine crossing tract, corticospinal tract, and SNc between the MSA-P and healthy controls and/or Parkinson’s disease patients. Our results shed light on alterations to brain microstructure in MSA.

Funder

Japan Agency for Medical Research and Development

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3