Increased mean diffusivity of the caudal motor SNc identifies patients with REM sleep behaviour disorder and Parkinson’s disease

Author:

Alushaj Erind,Hemachandra Dimuthu,Ganjavi Hooman,Seergobin Ken N.,Sharma ManasORCID,Kashgari AliaORCID,Barr Jennifer,Reisman William,Khan Ali R.,MacDonald Penny A.ORCID

Abstract

AbstractIdiopathic rapid eye movement sleep behaviour disorder (iRBD)—a Parkinson’s disease (PD) prodrome—might exhibit neural changes similar to those in PD. Substantia nigra pars compacta (SNc) degeneration underlies motor symptoms of PD. In iRBD and early PD (ePD), we measured diffusion MRI (dMRI) in the caudal motor SNc, which overlaps the nigrosome-1—the earliest-degenerating dopaminergic neurons in PD—and in the striatum. Nineteen iRBD, 26 ePD (1.7 ± 0.03 years), and 46 age-matched healthy controls (HCs) were scanned at Western University, and 47 iRBD, 115 ePD (0.9 ± 0.01 years), and 56 HCs were scanned through the Parkinson’s Progression Markers Initiative, using 3T MRI. We segmented the SNc and striatum into subregions using automated probabilistic tractography to the cortex. We measured mean diffusivity (MD) and fractional anisotropy (FA) along white-matter bundles and subregional surfaces. We performed group-level and classification analyses. Increased caudal motor SNc surface MD was the only iRBD-HCs and ePD-HCs difference replicating across datasets (padj < 0.05). No iRBD-ePD differences emerged. Caudal motor SNc surface MD classified patient groups from HCs at the single-subject level with good-to-excellent balanced accuracy in an independent sample (0.91 iRBD and 0.86 iRBD and ePD combined), compared to fair performance for total SNc surface MD (0.72 iRBD and ePD). Caudal motor SNc surface MD correlated significantly with MDS-UPDRS-III scores in ePD patients. Using dMRI and automated segmentation, we detected changes suggesting altered microstructural integrity in iRBD and ePD in the nigrostriatal subregion known to degenerate first in PD. Surface MD of the caudal motor SNc presents a potential measure for inclusion in neuroimaging biomarkers of iRBD and PD.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

Canada First Research Excellence Fund

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3