Diagnostic performance of deep learning in ultrasound diagnosis of breast cancer: a systematic review

Author:

Dan Qing,Xu Ziting,Burrows Hannah,Bissram Jennifer,Stringer Jeffrey S. A.ORCID,Li YingjiaORCID

Abstract

AbstractDeep learning (DL) has been widely investigated in breast ultrasound (US) for distinguishing between benign and malignant breast masses. This systematic review of test diagnosis aims to examine the accuracy of DL, compared to human readers, for the diagnosis of breast cancer in the US under clinical settings. Our literature search included records from databases including PubMed, Embase, Scopus, and Cochrane Library. Test accuracy outcomes were synthesized to compare the diagnostic performance of DL and human readers as well as to evaluate the assistive role of DL to human readers. A total of 16 studies involving 9238 female participants were included. There were no prospective studies comparing the test accuracy of DL versus human readers in clinical workflows. Diagnostic test results varied across the included studies. In 14 studies employing standalone DL systems, DL showed significantly lower sensitivities in 5 studies with comparable specificities and outperformed human readers at higher specificities in another 4 studies; in the remaining studies, DL models and human readers showed equivalent test outcomes. In 12 studies that assessed assistive DL systems, no studies proved the assistive role of DL in the overall diagnostic performance of human readers. Current evidence is insufficient to conclude that DL outperforms human readers or enhances the accuracy of diagnostic breast US in a clinical setting. Standardization of study methodologies is required to improve the reproducibility and generalizability of DL research, which will aid in clinical translation and application.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3