Stronger Arctic amplification from anthropogenic aerosols than from greenhouse gases

Author:

Wu You-Ting,Liang Yu-ChiaoORCID,Previdi MichaelORCID,Polvani Lorenzo M.ORCID,England Mark R.,Sigmond MichaelORCID,Lo Min-HuiORCID

Abstract

AbstractArctic amplification (AA), the greater Arctic surface warming compared to the global average, has been widely attributed to increasing concentrations of greenhouse gases (GHG). However, less is known about the impacts of other forcings - notably, anthropogenic aerosols (AER) - and how they may compare to the impacts of GHG. Here we analyze sets of climate model simulations, specifically designed to isolate the AER and GHG effects on global climate. Surprisingly, we find stronger AA produced by AER than by GHG during the 1955–1984 period, when the strongest global AER increase. This stronger AER-induced AA is due to a greater sensitivity of Arctic sea ice, and associated changes in ocean-to-atmosphere heat exchange, to AER forcing. Our findings highlight the asymmetric Arctic climate response to GHG and AER forcings, and show that clean air policies which have reduced aerosol emissions may have exacerbated the Arctic warming over the past few decades.

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3