Synthesis, characterisation, and catalytic application of a soluble molecular carrier of sodium hydride activated by a substituted 4-(dimethylamino)pyridine

Author:

Macdonald Peter A.,Kennedy Alan R.,Weetman Catherine E.ORCID,Robertson Stuart D.ORCID,Mulvey Robert E.ORCID

Abstract

AbstractRecently main group compounds have stepped into the territory of precious transition metal compounds with respect to utility in the homogeneous catalysis of fundamentally important organic transformations. Inspired by the need to promote more sustainability in chemistry because of their greater abundance in nature, this change of direction is surprising since main group metals generally do not possess the same breadth of reactivity as precious transition metals. Here, we introduce the dihydropyridylsodium compound, Na-1,2-tBu-DH(DMAP), and its monomeric variant [Na-1,2-tBu-DH(DMAP)]·Me6TREN, and demonstrate their effectiveness in transfer hydrogenation catalysis of the representative alkene 1,1-diphenylethylene to the alkane 1,1-diphenylethane using 1,4-cyclohexadiene as hydrogen source [DMAP = 4-dimethylaminopyridine; Me6TREN = tris(N,N-dimethyl-2-aminoethyl)amine]. Sodium is appealing because of its high abundance in the earth’s crust and oceans, but organosodium compounds have been rarely used in homogeneous catalysis. The success of the dihydropyridylsodium compounds can be attributed to their high solubility and reactivity in organic solvents.

Funder

Leverhulme Trust

RCUK | Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3