Abstract
AbstractMuch recent attention has been focused on the structure and reactivity of transition-metal superoxide complexes, among which mononuclear copper(II)-superoxide complexes are recognized as key reactive intermediates in many biological and abiological dioxygen-activation processes. So far, several types of copper(II)-superoxide complexes have been developed and their electrophilic reactivity has been explored in C–H and O–H bond activation reactions. Here we demonstrate that a mononuclear copper(II)-(end-on)superoxide complex supported by a N-[(2-pyridyl)methyl]-1,5-diazacyclooctane tridentate ligand can induce catalytic C–C bond formation reaction between carbonyl compounds (substrate) and the solvent molecule (acetone), giving β-hydroxy-ketones (aldol). Kinetic and spectroscopic studies at low temperature as well as DFT calculation studies support a nucleophilic reactivity of the superoxide species toward the carbonyl compounds, providing new insights into the reactivity of transition-metal superoxide species not only in biological oxidation reactions but also in synthetic organic chemistry.
Funder
MEXT | JST | Core Research for Evolutional Science and Technology
MEXT | Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献