Functional analysis of a putative HER2-associated expressed enhancer, Her2-Enhancer1, in breast cancer cells

Author:

Rojhannezhad Mahdieh,Soltani Bahram M.,Vasei Mohammad,Ghorbanmehr Nassim,Mowla Seyed Javad

Abstract

AbstractHER-2/neu (HER2) is a member of the epidermal growth factor receptors family, encoding a protein with tyrosine kinase activity. Following the gene amplification or increased HER2 transcription, carcinogenesis has been observed in some cancers. Genetic and epigenetic changes occurring in enhancer sequences can deeply affect the expression and transcriptional regulation of downstream genes, which can cause some physiological and pathological changes, including tumor progression. A therapeutic approach that directly targets the genomic sequence alterations is of high importance, with low side effects on healthy cells. Here, we employed the CRISPR/Cas9 method to genetically knockout an expressed putative enhancer (GH17J039694; we coined it as Her2-Enhancer1) located within the HER2 gene, 17q12: 39,694,339–39,697,219 (UCSC-hg38). We then investigated the potential regulatory effect of Her2-Enhancer1 on HER2 and HER2-interacting genes. To evaluate the cis and trans effects of Her2-Enhancer1, genetic manipulation of this region was performed in HER2-positive and -negative breast cancer cells. Our bioinformatics and real-time PCR data revealed that this putative enhancer region is indeed expressed, and acts as an expressed enhancer. Further functional analysis on edited and unedited cells revealed a significant alteration in the expression of HER2 variants, as well as some other target genes of HER2. Moreover, the apoptosis rate was considerably elevated within the edited cells. As we expected, Western blot analysis confirmed a reduction in protein levels of HER2, GRB7, the gene interacting with HER2, and P-AKT in the PI3K/AKT pathway. Altogether, our findings revealed an enhancer regulatory role for Her2-Enhancer1 on HER2 and HER2-interacting genes; and that this region has a potential for targeted therapy of HER2-positive cancers.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3