A top-down measure of gene-to-gene coordination for analyzing cell-to-cell variability

Author:

Vaknin Dana,Amit Guy,Bashan Amir

Abstract

AbstractRecent technological advances, such as single-cell RNA sequencing (scRNA-seq), allow the measurement of gene expression profiles of individual cells. These expression profiles typically exhibit substantial variations even across seemingly homogeneous populations of cells. Two main different sources contribute to this measured variability: actual differences between the biological activity of the cells and technical measurement errors. Analysis of the biological variability may provide information about the underlying gene regulation of the cells, yet distinguishing it from the technical variability is a challenge. Here, we apply a recently developed computational method for measuring the global gene coordination level (GCL) to systematically study the cell-to-cell variability in numerical models of gene regulation. We simulate ‘biological variability’ by introducing heterogeneity in the underlying regulatory dynamic of different cells, while ‘technical variability’ is represented by stochastic measurement noise. We show that the GCL decreases for cohorts of cells with increased ‘biological variability’ only when it is originated from the interactions between the genes. Moreover, we find that the GCL can evaluate and compare—for cohorts with the same cell-to-cell variability—the ratio between the introduced biological and technical variability. Finally, we show that the GCL is robust against spurious correlations that originate from a small sample size or from the compositionality of the data. The presented methodology can be useful for future analysis of high-dimensional ecological and biochemical dynamics.

Funder

Azrieli Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3