Quantitative monitoring and modelling of retrodialysis drug delivery in a brain phantom

Author:

Rognin Etienne,Willis-Fox Niamh,Daly Ronan

Abstract

AbstractA vast number of drug molecules are unable to cross the blood-brain barrier, which results in a loss of therapeutic opportunities when these molecules are administered by intravenous infusion. To circumvent the blood-brain barrier, local drug delivery devices have been developed over the past few decades such as reverse microdialysis. Reverse microdialysis (or retrodialysis) offers many advantages, such as a lack of net volume influx to the intracranial cavity and the ability to sample the tumour’s micro-environment. However, the translation of this technique to efficient drug delivery has not been systematically studied. In this work, we present an experimental platform to evaluate the performance of microdialysis devices in reverse mode in a brain tissue phantom. The mass of model drug delivered is measured by computing absorbance fields from optical images. Concentration maps are reconstructed using a modern and open-source implementation of the inverse Abel transform. To illustrate our method, we assess the capability of a commercial probe in delivering methylene blue to a gel phantom. We find that the delivery rate can be described by classical microdialysis theory, except at low dialysate flow rates where it is impacted by gravity, and high flow rates where significant convection to the gel occurs. We also show that the flow rate has an important impact not only on the overall size of the drug plume, but also on its shape. The numerical tools developed for this study have been made freely available to ensure that the method presented can be used to rapidly and inexpensively optimise probe design and protocol parameters before proceeding to more in-depth studies.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3