A novel reactive-extractive distillation process for separation of water/methanol/tetrahydrofuran mixtures

Author:

Neyestani F.,Eslamloueyan R.

Abstract

AbstractThe design of separation systems for the purification of azeotropic mixtures is of great importance in the chemical industries from economic and environmental points of view. Two novel reactive-extractive distillation (RED) processes, new design (I) and new design (II), were proposed for separating the azeotropic mixture of water/methanol/tetrahydrofuran (THF). These processes were compared to a conventional extractive distillation (ED) process. New design (I) employs dimethyl sulfoxide as a solvent, while new design (II) utilizes ethylene glycol. Ethylene oxide was introduced to the first column in both designs, enabling the in-situ production of ethylene glycol, a valuable byproduct. This is a novel solution to separate water from the azeotropic mixture by reaction between ethylene oxide and water. Aspen Plus software was used to simulate and design the processes. Both suggested designs were compared economically with the base design which is an ED process. According to the results, the new design (I) is more cost-effective and environmentally friendly alternative to the base design and the new design (II). It has a lower total capital cost and produces less carbon dioxide. Additionally, it generates a valuable by-product, ethylene glycol, which can be sold for substantial revenue. As a result, the new design (I) is the preferred choice for replacing the conventional extractive distillation method.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3