Comparative multiomics analysis of cell physiological state after culture in a basket bioreactor

Author:

Yu Shouzhi,Guo Miaomiao,Zhang Yadan,Bo Cunpei,Liang Hongyang,Wang Hui,Yang Xiaoming

Abstract

AbstractBioreactors are one of the most important, basic pieces of equipment in the biopharmaceutical industry. Understanding the effects of mechanical damage and other factors on the physiological state of cells during cell matrix culture is the basis for continuously achieving greater efficiency and higher product quality. In this study, Vero cells were used as a model and apoptosis, senescence, transcriptomics, proteomics, and metabolomics were carried out for analysis at the cellular and molecular levels. The results showed that compared with cells cultured in the simulated natural state, the cells cultured in the basket bioreactor displayed no obvious senescence. Additionally, the proportion of early apoptotic cells increased, but the proportions of damaged, late apoptotic and dead cells did not change significantly. The transcription levels of aminoacyl-tRNA synthetase and cyclin D1 and the expression levels of DNA replication licensing factor, methenyltetrahydrofolate cyclohydrolase, arachidonic acid and other metabolites of cells cultured in the basket bioreactor were significantly increased. These results suggest that DNA replication, protein translation and the metabolic activities in cells cultured in basket bioreactors are more active, which is more conducive to cell amplification and target product production. In this study, the growth and physiological state of cells in a basket bioreactor were characterized at the molecular level for the first time. Additionally, a tool to evaluate the physiological state of cells in a bioreactor was established, which can be used to guide the development and optimization of cell matrix culture conditions in industrial production and improve the production efficiency of the target products.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3