Galerkin finite element analysis for the augmentation in thermal transport of ternary-hybrid nanoparticles by engaging non-Fourier’s law

Author:

Sohail Muhammad,Nazir Umar,El-Zahar Essam R.,Park Choonkil,Jamshed Wasim,Mukdasai Kanit,Galal Ahmed M.

Abstract

AbstractBoosting of thermal transportation is the demand of current era. Several techniques have been used to do so. One of an important way is the mixing of nanoparticles to boost thermal performance. Current investigation has been prepared to study the inclusion of tri hybrid nanoparticles in Prandtl fluid model past over a stretched heated sheet. Modelling of consider problem has been done due to consideration of movement in flow in Cartesian coordinates which results coupled partial differential equation system thermal transport in presented by considering generalized heat flux model and heat generation/absorption. The derived coupled complex partial differential equations (PDEs) system is simplified by engaging boundary layer theory. Such developed model is used in coolants regarding automobiles, dynamics in fuel and production of solar energy, fuel cells, optical chemical sensors, automotive parts, dental products, cancer therapy, electrical insulators and dental products. Handling of complex PDEs for the solution is a challenging task. Due to complexity in computational work these PDEs have been transformed into ordinary differential equations (ODEs) after applying similarity transformation afterwards converted ODEs have been approximated via finite element algorithm coded in MAPLE 18.0 symbolic computational package. Comparative study has been presented for the validity of code and authenticity of obtained result. It is observed that fluid velocity for tri-hybrid nanoparticles is higher than fluidic motion for pure fluid, nanofluid and hybrid nanomaterial.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3