Machine learning models for predicting early hemorrhage progression in traumatic brain injury

Author:

Lee Heui Seung,Kim Ji Hee,Son Jiye,Park Hyeryun,Choi Jinwook

Abstract

AbstractThis study explores the progression of intracerebral hemorrhage (ICH) in patients with mild to moderate traumatic brain injury (TBI). It aims to predict the risk of ICH progression using initial CT scans and identify clinical factors associated with this progression. A retrospective analysis of TBI patients between January 2010 and December 2021 was performed, focusing on initial CT evaluations and demographic, comorbid, and medical history data. ICH was categorized into intraparenchymal hemorrhage (IPH), petechial hemorrhage (PH), and subarachnoid hemorrhage (SAH). Within our study cohort, we identified a 22.2% progression rate of ICH among 650 TBI patients. The Random Forest algorithm identified variables such as petechial hemorrhage (PH) and countercoup injury as significant predictors of ICH progression. The XGBoost algorithm, incorporating key variables identified through SHAP values, demonstrated robust performance, achieving an AUC of 0.9. Additionally, an individual risk assessment diagram, utilizing significant SHAP values, visually represented the impact of each variable on the risk of ICH progression, providing personalized risk profiles. This approach, highlighted by an AUC of 0.913, underscores the model’s precision in predicting ICH progression, marking a significant step towards enhancing TBI patient management through early identification of ICH progression risks.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3