Effect of calcium carbonate nanoparticles, silver nanoparticles and advanced platelet-rich fibrin for enhancing bone healing in a rabbit model

Author:

Abd-Elkawi Mohamed,Sharshar Ahmed,Misk Tarek,Elgohary Islam,Gadallah Shaaban

Abstract

AbstractThis study aimed to evaluate the efficacy of calcium carbonate nanoparticles (CCNPs) to induce new bone formation in a critical size segmental bone defect in rabbit’s radius when used alone, combined with silver nanoparticles (AgNPs) as a paste, or as a composite containing CCNPs, AgNPs, and advanced platelet-rich fibrin (A-PRF). Thirty-six adult apparently healthy male New Zealand White rabbits aging from 5 to 6 months and weighting 3.5 ± 0.5 kg were used. The animals were divided into four groups; control group, CCNPs group, CCNPs/AgNPs paste group, and CCNPs/AgNPs/A-PRF composite group. The animals were investigated at 4, 8, and 12 weeks post-implantation in which the healing was evaluated using computed tomographic (CT) and histopathological evaluation. The results revealed that CCNPs/AgNPs paste and CCNPs/AgNPs/A-PRF composite has a superior effect regarding the amount and the quality of the newly formed bone compared to the control and the CCNPs alone. In conclusion, addition of AgNPs and/or A-PRF to CCNPs has reduced its resorption rate and improved its osteogenic and osteoinductive properties.

Funder

New Valley University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3