A1BG-AS1 promotes adriamycin resistance of breast cancer by recruiting IGF2BP2 to upregulate ABCB1 in an m6A-dependent manner

Author:

Wang Jian,Xu Jie,Zheng Jie

Abstract

AbstractAdriamycin (ADR) resistance is an obstacle for chemotherapy of breast cancer (BC). ATP binding cassette subfamily B member 1 (ABCB1) expression is indicated to be closely related to the drug resistance of cancer cells. The current work intended to explore the molecular mechanisms to regulate ABCB1 in BC cells with ADR resistance. We found that long noncoding RNA (lncRNA) A1BG antisense RNA 1 (A1BG-AS1) is upregulated in ADR resistant BC cell lines (MCF-7/ADR, MDA-MB-231/ADR). A1BG-AS1 knockdown enhanced the ADR sensitivity by suppressing the viability, proliferation potential and migration ability, and facilitating cell apoptosis in BC. Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is known to be an m6A reader to modulate the stability of mRNA transcripts in an m6A-dependent manner, which was a shared RNA binding protein (RBP) for A1BG-AS1 and ABCB1. The interaction of IGF2BP2 with A1BG-AS1 or ABCB1 was explored and verified using RNA pulldown and RNA immunoprecipitation (RIP) assays. ABCB1 mRNA and protein expression was positively regulated by A1BG-AS1 and IGF2BP2 in BC cells. ABCB1 mRNA expression was stabilized by A1BG-AS1 via recruiting IGF2BP2 in an m6A-dependent manner. Moreover, rescue assays demonstrated that A1BG-AS1 enhanced BC ADR resistance by positively modulating ABCB1. Xenograft mouse models were used to explore whether A1BG-AS1 affected the ADR resistance in BC in vivo. The findings indicated that A1BG-AS1 silencing inhibited tumor growth and alleviated ADR resistance in vivo. In conclusion, A1BG-AS1 enhances the ADR resistance of BC by recruiting IGF2BP2 to upregulate ABCB1 in an m6A-dependent manner.

Funder

Science and Technology Project of Tianjin Binhai New Area Health Commission in 2019

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3