Planning evaluation of a novel volume-based algorithm for personalized optimization of lung dose in VMAT for esophageal cancer

Author:

Hsu Chen-Xiong,Lin Kuan-Heng,Wang Shan-Ying,Tsai Wei-Ta,Chang Chiu-Han,Tien Hui-Ju,Shueng Pei-Wei,Wu Tung-Hsin,Mok Greta S. P.

Abstract

AbstractRadiotherapy treatment planning (RTP) is time-consuming and labor-intensive since medical physicists must devise treatment plans carefully to reduce damage to tissues and organs for patients. Previously, we proposed the volume-based algorithm (VBA) method, providing optimal partial arcs (OPA) angle to achieve the low-dose volume of lungs in dynamic arc radiotherapy. This study aimed to implement the VBA for esophageal cancer (EC) patients and compare the lung dose and delivery time between full arcs (FA) without using VBA and OPA angle using VBA in volumetric modulated arc therapy (VMAT) plans. We retrospectively included 30 patients diagnosed with EC. RTP of each patient was replanned to 4 VMAT plans, including FA plans without (FA-C) and with (FA + C) dose constraints of OARs and OPA plans without (OPA-C) and with (OPA + C) dose constraints of OARs. The prescribed dose was 45 Gy. The OARs included the lungs, heart, and spinal cord. The dose distribution, dose-volume histogram, monitor units (MUs), delivery time, and gamma passing rates were analyzed. The results showed that the lung V5 and V10 in OPA + C plans were significantly lower than in FA + C plans (p < 0.05). No significant differences were noted in planning target volume (PTV) coverage, lung V15, lung V20, mean lung dose, heart V30, heart V40, mean heart dose, and maximal spinal cord dose between FA + C and OPA + C plans. The delivery time was significantly longer in FA + C plans than in OPA + C plans (237 vs. 192 s, p < 0.05). There were no significant differences between FA + C and OPA + C plans in gamma passing rates. We successfully applied the OPA angle based on the VBA to clinical EC patients and simplified the arc angle selection in RTP. The VBA could provide a personalized OPA angle for each patient and effectively reduce lung V5, V10, and delivery time in VMAT.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3