Chain architectures of various cellulose-based antiscalants on the inhibition of calcium carbonate scale

Author:

Yu Wei,Yang Hu

Abstract

AbstractTwo series of cellulose-based antiscalants with different chain architectures, i.e., linear carboxymethyl cellulose (CMC) and branch-shaped carboxymethyl cellulose-graft-poly(acrylic acid) (CMC-g-PAA), were synthesized. The carboxyl groups were distributed on CMC backbone but mainly on the grafted chains of CMC-g-PAA. The addition of CMC and CMC-g-PAA can both increase the surface energy of CaCO3 scale and decrease its crystal nucleation rate, thereby inhibiting CaCO3 scale formation. The structural effects of these cellulose-based antiscalants, especially the chain architectures, on the scale inhibition were investigated in detail. High degree of carboxymethyl substitution caused better inhibition effect of linear CMC. However, CMC-g-PAA with an appropriate content of carboxyl groups but high average number of PAA grafted chains can achieve high inhibition performance. Besides, with similar contents of carboxyl groups, CMC-g-PAA showed much better inhibition performance than CMC due to the distinct multi-dimensional spatial structure of graft copolymer in solution, causing the enhanced chelation and dispersion effects. Characterization of CaCO3 crystal by scanning electron microscopy and X-ray diffraction confirmed that crystal distortion effect obviously existed in CMC but quite minor in CMC-g-PAA. The differences between the scale-inhibition performance of CMC and CMC-g-PAA should be attributed to the different scale-inhibition mechanisms originated in their distinct chain architectures.

Funder

Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3