A comprehensive physiologically based pharmacokinetic (PBPK) model for nicotine in humans from using nicotine-containing products with different routes of exposure

Author:

Rostami Ali A.,Campbell Jerry L.,Pithawalla Yezdi B.,Pourhashem Hamideh,Muhammad-Kah Raheema S.,Sarkar Mohamadi A.,Liu Jianmin,McKinney Willie J.,Gentry Robinan,Gogova Maria

Abstract

AbstractPhysiologically based pharmacokinetic (PBPK) modeling can be a useful tool for characterizing nicotine pharmacokinetics (PK) from use of tobacco products. We expand a previously published PBPK model to simulate a nicotine PK profile, following single or multiple use of various tobacco products [cigarettes, smokeless tobacco, and electronic nicotine delivery systems, or a nicotine inhaler (NICOTROL)] The uptake route in the model was designed to allow for three uptake compartments: buccal cavity (BC), upper respiratory tract (URT) (conducting and transitional airways) and lower respiratory tract (alveolar region). Within each region, the model includes product-specific descriptions of the flux of nicotine into plasma, as well as the flux of nicotine from the BC and URT to the gastrointestinal tract. These descriptions are based on regional deposition and diffusion models of nicotine into plasma, which depends on the product type. Regional deposition flux combined with regional differences in physiological parameters (e.g., blood perfusion ratio and tissue thickness) play a key role in the product-specific PK profile of nicotine. The current model describes the slower flux of nicotine into plasma across the BC and URT, as well as the rapid flux known to occur in the alveolar region. Overall, the addition of the BC and respiratory tract compartments to the nicotine model provided simulation results that are comparable to the nicotine time-course plasma concentrations reported from clinical studies for the four product categories simulated.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference41 articles.

1. US Food and Drug Administration. FDA Comprehensive Plan for Tobacco and Nicotine Regulation (accessed 09 March 2021)

2. https://www.fda.gov/tobacco-products/ctp-newsroom/fdas-comprehensive-plan-tobacco-and-nicotine-regulation (2019).

3. US Food and Drug Administration. Premarket Tobacco Product Applications and Recordkeeping Requirements, Proposed Rule by the Food and Drug Administration on 09/25/2019 (accessed 09 March 2021)

4. https://www.federalregister.gov/documents/2019/09/25/2019-20315/premarket-tobacco-product-applications-and-recordkeeping-requirements (2019).

5. Plowchalk, D. R., Andersen, M. E. & deBethizy, J. D. A physiologically based pharmacokinetic model for nicotine disposition in the Sprague-Dawley rat. Toxicol. Appl. Pharmacol. 116(2), 177–188 (1992).

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3