Study of Structural stability and formation mechanisms in DSPC and DPSM liposomes: A coarse-grained molecular dynamics simulation

Author:

Hashemzadeh H.,Javadi H.,Darvishi M. H.

Abstract

AbstractLiposomes or biological vesicles can be created from cholesterol, phospholipid, and water. Their stability is affected by their phospholipid composition which can influence disease treatment and drug delivery efficacy. In this study, the effect of phospholipid type on the formation and stability of liposomes using coarse-grained molecular dynamics simulations is investigated. For this purpose, the simulation study of the DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine) and DPSM (Egg sphingomyelin) lipids were considered. All simulations were carried out using the Gromacs software and Martini force field 2.2. Energy minimization (3000 steps) model, equilibrium at constant volume to adjust the temperature at 400 Kelvin and equilibrium at constant pressure to adjust the pressure, at atmospheric pressure (1 bar) have been validated. Microsecond simulations, as well as formation analysis including density, radial distribution function, and solvent accessible surface area, demonstrated spherical nanodisc structures for the DPSM and DSPC liposomes. The results revealed that due to the cylindrical geometric structure and small-size head group, the DSPC lipid maintained its perfectly spherical structure. However, the DPSM lipid showed a conical geometric structure with larger head group than other lipids, which allows the liposome to form a micelle structure. Although the DSPC and DPSM lipids used in the laboratory tests exhibit liposome and micelle behaviors, the simulation results revealed their nanodisc structures. Energy analysis including overall energy, Van der Waals interaction energy, and electrostatic interaction energy showed that DPSM liposome is more stable than DSPC liposome.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3