Hesperetin promotes bladder cancer cells death via the PI3K/AKT pathway by network pharmacology and molecular docking

Author:

Lv Yue,Liu Zhonghao,Deng Leihong,Xia Shunyao,Mu Qingchun,Xiao Bang,Xiu Youcheng,Liu Zan

Abstract

AbstractPatients with bladder cancer (BLCA) still show high recurrence after surgery and chemotherapy. Hesperetin (HE), as a natural compound, has attracted researchers’ attention due to its low toxicity and easy access. However, the inhibitory effect of HE on BLCA remains unknown. The hub genes and enrichment pathways regulated by HE in the treatment of BLCA were predicted by network pharmacology. The molecular docking of HE and hub proteins was visualized. Colony and CCK8 assays were used to test cell proliferation, and BLCA migration was confirmed by transwell and wound healing assays. In addition, the occurrence of apoptosis and ferroptosis was demonstrated by Hoechst staining, transmission electron microscopy (TEM) and ROS (reactive oxygen species) assay. Western Blotting was performed to validate the hub proteins, target functions and pathways. SRC, PIK3R1 and MAPK1 were identified as hub targets for HE in BLCA, involving the PI3k/AKT pathway. Furthermore, HE inhibited the proliferation and migration of BLCA cells. The MMP2/MMP9 proteins were significantly inhibited by HE. The increased expression of Bax and cleaved caspase-3 indicated that HE could promote BLCA cell apoptosis. In addition, Hoechst staining revealed concentrated and illuminated apoptotic nuclei. The activation of ROS and the decline of GPX4 expression suggested that HE might induce ferroptosis as an anti-BLCA process. Shrunk mitochondria and apoptotic bodies were observed in BLCA cells treated with HE, with reduced or absent mitochondrial cristae. We propose for the first time that HE could inhibit the proliferation and migration of BLCA cells and promote apoptosis and ferroptosis. HE may act by targeting proteins such as SRC, PIK3R1 and MAPK1 and the PI3K/AKT pathway.

Funder

Heilongjiang Provincial Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3