A fixed 20:1 combination of cafedrine/theodrenaline increases cytosolic Ca2+ concentration in human tracheal epithelial cells via ryanodine receptor-mediated Ca2+ release

Author:

Schmidt Götz,Rienas Gerrit,Müller Sabrina,Richter Katrin,Sander Michael,Koch Christian,Henrich Michael

Abstract

AbstractMucociliary clearance is a pivotal physiological mechanism that protects the lung by cleaning the airways from pollution and colonization, thereby preventing infection. Ciliary function is influenced by various signal transduction cascades, and Ca2+ represents a key second messenger. A fixed 20:1 combination of cafedrine and theodrenaline has been widely used to treat perioperative hypotension and emergency hypotensive states since the 1960s; however, its effect on the intracellular Ca2+ concentration ([Ca2+]i) of respiratory epithelium remains unknown. Therefore, human tracheal epithelial cells were exposed to the clinically applied 20:1 mixture of cafedrine/theodrenaline and the individual substances separately. [Ca2+]i was assessed by FURA-2 340/380 fluorescence ratio. Pharmacological inhibitors were applied to elucidate relevant signal transduction cascades, and reverse transcription polymerase chain reaction (RT-PCR) was performed on murine tracheal epithelium to analyze ryanodine receptor (RyR) subtype expression. All three pharmacological preparations instantaneously induced a steep increase in [Ca2+]i that quickly returned to its baseline value despite the persistence of each substance. Peak [Ca2+]i following the administration of 20:1 cafedrine/theodrenaline, cafedrine alone, and theodrenaline alone increased in a dose-dependent manner, with median effective concentrations of 0.35 mM (7.32 mM cafedrine and 0.35 mM theodrenaline), 3.14 mM, and 3.45 mM, respectively. When extracellular Ca2+ influx was inhibited using a Ca2+-free buffer solution, the peak [Ca2+]i following the administration of cafedrine alone and theodrenaline alone were reduced but not abolished. No alteration in [Ca2+]i compared with baseline [Ca2+]i was observed during β-adrenergic receptor inhibition. Depletion of caffeine-sensitive stores and inhibition of RyR, but not IP3 receptors, completely abolished any increase in [Ca2+]i. However, [Ca2+]i still increased following the depletion of mitochondrial Ca2+ stores using 2,4-dinitrophenol. RT-PCR revealed RyR-2 and RyR-3 expression on murine tracheal epithelium. Although our experiments showed that cafedrine/theodrenaline, cafedrine alone, or theodrenaline alone release Ca2+ from intracellular stores through mechanisms that are exclusively triggered by β-adrenergic receptor stimulation, which most probably lead to RyR activation, clinical plasma concentrations are considerably lower than those used in our experiments to elicit an increase in [Ca2+]i; therefore, further studies are needed to evaluate the ability of cafedrine/theodrenaline to alter mucociliary clearance in clinical practice.

Funder

Justus-Liebig-Universität Gießen

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3