A general skull stripping of multiparametric brain MRIs using 3D convolutional neural network

Author:

Pei Linmin,Ak Murat,Tahon Nourel Hoda M.,Zenkin Serafettin,Alkarawi Safa,Kamal Abdallah,Yilmaz Mahir,Chen Lingling,Er Mehmet,Ak Nursima,Colen Rivka

Abstract

AbstractAccurate skull stripping facilitates following neuro-image analysis. For computer-aided methods, the presence of brain skull in structural magnetic resonance imaging (MRI) impacts brain tissue identification, which could result in serious misjudgments, specifically for patients with brain tumors. Though there are several existing works on skull stripping in literature, most of them either focus on healthy brain MRIs or only apply for a single image modality. These methods may be not optimal for multiparametric MRI scans. In the paper, we propose an ensemble neural network (EnNet), a 3D convolutional neural network (3DCNN) based method, for brain extraction on multiparametric MRI scans (mpMRIs). We comprehensively investigate the skull stripping performance by using the proposed method on a total of 15 image modality combinations. The comparison shows that utilizing all modalities provides the best performance on skull stripping. We have collected a retrospective dataset of 815 cases with/without glioblastoma multiforme (GBM) at the University of Pittsburgh Medical Center (UPMC) and The Cancer Imaging Archive (TCIA). The ground truths of the skull stripping are verified by at least one qualified radiologist. The quantitative evaluation gives an average dice score coefficient and Hausdorff distance at the 95th percentile, respectively. We also compare the performance to the state-of-the-art methods/tools. The proposed method offers the best performance.The contributions of the work have five folds: first, the proposed method is a fully automatic end-to-end for skull stripping using a 3D deep learning method. Second, it is applicable for mpMRIs and is also easy to customize for any MRI modality combination. Third, the proposed method not only works for healthy brain mpMRIs but also pre-/post-operative brain mpMRIs with GBM. Fourth, the proposed method handles multicenter data. Finally, to the best of our knowledge, we are the first group to quantitatively compare the skull stripping performance using different modalities. All code and pre-trained model are available at: https://github.com/plmoer/skull_stripping_code_SR.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3