Author:
Otsuka Satoshi,Qin Xian-Yang,Wang Wenlong,Ito Tomohiro,Nansai Hiroko,Abe Kuniya,Fujibuchi Wataru,Nakao Yoichi,Sone Hideko
Abstract
AbstractChemical-induced dysregulation of DNA methylation during the fetal period is known to contribute to developmental disorders or increase the risk of certain diseases later in life. In this study, we developed an iGEM (iPS cell-based global epigenetic modulation) detection assay using human induced pluripotent stem (hiPS) cells that express a fluorescently labeled methyl-CpG-binding domain (MBD), which enables a high-throughput screening of epigenetic teratogens/mutagens. 135 chemicals with known cardiotoxicity and carcinogenicity were categorized according to the MBD signal intensity, which reflects the degree of nuclear spatial distribution/concentration of DNA methylation. Further biological characterization through machine-learning analysis that integrated genome-wide DNA methylation, gene expression profiling, and knowledge-based pathway analysis revealed that chemicals with hyperactive MBD signals strongly associated their effects on DNA methylation and expression of genes involved in cell cycle and development. These results demonstrated that our MBD-based integrated analytical system is a powerful framework for detecting epigenetic compounds and providing mechanism insights of pharmaceutical development for sustainable human health.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献