Magneto-Hybrid Nanofluids Flow via Mixed Convection past a Radiative Circular Cylinder

Author:

EL-Zahar E. R.,Rashad A. M.,Saad W.,Seddek L. F.

Abstract

AbstractThe goal of the current analysis is to scrutinize the magneto-mixed convective flow of aqueous-based hybrid-nanofluid comprising Alumina and Copper nanoparticles across a horizontal circular cylinder with convective boundary condition. The energy equation is modelled by interpolating the non-linear radiation phenomenon with the assisting and opposing flows. The original equations describing the magneto-hybrid nanofluid motion and energy are converted into non-dimensional equations and solved numerically using a new hybrid linearization-Chebyshev spectral method (HLCSM). HLCSM is a high order spectral semi-analytical numerical method that results in an analytical solution in η-direction and thereby the solution is valid in overall the η-domain, not only at the grid points. The impacts of diverse parameters on the allied apportionment are inspected, and the fallouts are described graphically in the investigation. The physical quantities of interest containing the drag coefficient and the heat transfer rate are predestined versus fundamental parameters, and their outcomes are elucidated. It is witnessed that both drag coefficient and Nusselt number have greater magnitude for Cu-water followed by hybrid nanofluid and Al2O3-water. Moreover, the value of the drag coefficient declines versus the enlarged solid volume fraction. To emphasize the originality of the current analysis, the outcomes are compared with quoted works, and excellent accord is achieved in this consideration.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3