Causal impact evaluation of occupational safety policies on firms’ default using machine learning uplift modelling

Author:

Barile Berardino,Forti Marco,Marrocco Alessia,Castaldo Angelo

Abstract

AbstractIt is often undermined that occupational safety policies do not only displace a direct effect on work well-being, but also an indirect effect on firms’ economic performances. In such context, econometric models dominated the scenes of causality until recently while Machine Learning models were seen with skepticism. With the rise of complex datasets, an ever-increasing need for automated algorithms capable to handle complex non-linear relationships between variables has brought to uncover the power of Machine Learning for causality. In this paper, we carry out an evaluation of a public aid-scheme implemented in Italy and oriented to support investment of small and medium enterprises (SMEs) in occupational safety and health (OSH) for assessing the impact on the survival of corporations. A comparison of thirteen models is performed and the Individual Treatment Effect (ITE) estimated and validated based on the AUUC and Qini score for which best values of 0.064 and 0.407, respectively, are obtained based on the Light Gradient Boosting Machine (LightGBM). An additional in-depth statistical analysis also revealed that the best beneficiaries of the policy intervention are those firms that experience performance issues in the period just before the interventions and for which the increased liquidity brought by the policy may have prevented default.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3