Response of atomic spin-based sensors to magnetic and nonmagnetic perturbations

Author:

Padniuk Mikhail,Kopciuch Marek,Cipolletti Riccardo,Wickenbrock Arne,Budker Dmitry,Pustelny Szymon

Abstract

AbstractSearches for pseudo-magnetic spin couplings require implementation of techniques capable of sensitive detection of such interactions. While Spin-Exchange Relaxation Free (SERF) magnetometry is one of the most powerful approaches enabling the searches, it suffers from a strong magnetic coupling, deteriorating the pseudo-magnetic coupling sensitivity. To address this problem, here, we compare, via numerical simulations, the performance of SERF magnetometer and noble-gas-alkali-metal co-magnetometer, operating in a so-called self-compensating regime. We demonstrate that the co-magnetometer allows reduction of the sensitivity to low-frequency magnetic fields without loss of the sensitivity to nonmagnetic couplings. Based on that we investigate the responses of both systems to the oscillating and transient spin perturbations. Our simulations reveal about five orders of magnitude stronger response to the neutron pseudo-magnetic coupling and about three orders of magnitude stronger response to the proton pseudo-magnetic coupling of the co-magnetometer than those of the SERF magnetometer. Different frequency responses of the co-magnetometer to magnetic and nonmagnetic perturbations enables differentiation between these two types of interactions. This outlines the ability to implement the co-magnetometer as an advanced sensor for the Global Network of Optical Magnetometer for Exotic Physics searches (GNOME), aiming at detection of ultra-light bosons (e.g., axion-like particles).

Funder

Uniwersytet Jagielloński w Krakowie

German Federal Ministry of Education and Research

German Research Foundation (DFG) within the German Excellence Strategy

European Research Council (ERC) under the European Union Horizon 2020

National Science Centre of Poland within the OPUS programme

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3