High-pressure studies in the supercooled and glassy state of the strongly associated active pharmaceutical ingredient—ticagrelor

Author:

Jesionek Paulina,Heczko Dawid,Hachuła Barbara,Kamiński Kamil,Kamińska Ewa

Abstract

AbstractIn this paper, the molecular dynamics at different thermodynamic conditions of hydrogen-bonded (H-bonded) active pharmaceutical ingredient—ticagrelor (TICA) have been investigated. Extensive high-pressure (HP) dielectric studies revealed surprising high sensitivity of the structural (α)-relaxation to compression. They also showed that unexpectedly the shape of the α-peak remains invariable at various temperature (T) and pressure (p) conditions at constant α-relaxation time. Further infrared measurements on the ordinary and pressure densified glasses of the examined compound indicated that the hydrogen-bonding pattern in TICA is unchanged by the applied experimental conditions. Such behavior was in contrast to that observed recently for ritonavir (where the organization of hydrogen bonds varied at high p) and explained the lack of changes in the width of α-dispersion with compression. Moreover, HP dielectric measurements performed in the glassy state of TICA revealed the high sensitivity of the slow secondary (β)-relaxation (Johari–Goldstein type) to pressure and fulfillment of the isochronal superpositioning of α- and JG-β-relaxation times. Additionally, it was found that the activation entropy for the β-process, estimated from the Eyring equation (a high positive value at 0.1 MPa) slightly increases with compression. We suggested that the reason for that are probably small conformational variations of TICA molecules at elevated p.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3