Finite element analysis predicts Ca2+ microdomains within tubular-sarcoplasmic reticular junctions of amphibian skeletal muscle

Author:

Bardsley Oliver J.,Matthews Hugh R.,Huang Christopher L.-H.

Abstract

AbstractA finite element analysis modelled diffusional generation of steady-state Ca2+ microdomains within skeletal muscle transverse (T)-tubular-sarcoplasmic reticular (SR) junctions, sites of ryanodine receptor (RyR)-mediated SR Ca2+ release. It used established quantifications of sarcomere and T-SR anatomy (radial diameter $$d=220 \, \mathrm{n}\mathrm{m}$$ d = 220 n m ; axial distance $$w=12 \, \mathrm{n}\mathrm{m}$$ w = 12 n m ). Its boundary SR Ca2+ influx densities,$${J}_{\mathrm{influx}}$$ J influx , reflected step impositions of influxes, $$\it {\Phi }_{\mathrm{influx}}={J}_{\mathrm{influx}}\left(\frac{\pi {d}^{2}}{4}\right),$$ Φ influx = J influx π d 2 4 , deduced from previously measured Ca2+ signals following muscle fibre depolarization. Predicted steady-state T-SR junctional edge [Ca2+], [Ca2+]edge, matched reported corresponding experimental cytosolic [Ca2+] elevations given diffusional boundary efflux$$\it \it {\Phi }_{\mathrm{efflux}}=\frac{D [ {{{\mathrm{Ca}}^{2+}}}]_{\mathrm{edge}}}{\lambda } (\pi dw),$$ Φ efflux = D [ Ca 2 + ] edge λ ( π dw ) , established cytosolic Ca2+ diffusion coefficients $$(D = 4 \times {10}^{7} \mathrm{nm}^{2}/\mathrm{s})$$ ( D = 4 × 10 7 nm 2 / s ) and exit length $$\lambda = 9.2 \, \mathrm{n}\mathrm{m}$$ λ = 9.2 n m . Dependences of predicted [Ca2+]edge upon $${J}_{\mathrm{influx}}$$ J influx then matched those of experimental [Ca2+] upon Ca2+ release through their entire test voltage range. The resulting model consistently predicted elevated steady-state T-SR junctional ~ µM-[Ca2+] elevations radially declining from maxima at the T-SR junction centre along the entire axial T-SR distance. These [Ca2+] heterogeneities persisted through 104- and fivefold, variations in D and w around, and fivefold reductions in d below, control values, and through reported resting muscle cytosolic [Ca2+] values, whilst preserving the flux conservation ($$\it \it {\Phi }_{\mathrm{influx}}={\Phi }_{\mathrm{efflux}})$$ Φ influx = Φ efflux ) condition, $${\left[\mathrm{C}{\mathrm{a}}^{2+}\right]}_{\mathrm{edge}}=\frac{\lambda {dJ}_{\mathrm{influx}}}{4Dw}$$ C a 2 + edge = λ dJ influx 4 D w . Skeletal muscle thus potentially forms physiologically significant ~ µM-[Ca2+] T-SR microdomains that could regulate cytosolic and membrane signalling molecules including calmodulin and RyR, These findings directly fulfil recent experimental predictions invoking such Ca2+ microdomains in observed regulatory effects upon Na+ channel function, in a mechanism potentially occurring in similar restricted intracellular spaces in other cell types.

Funder

Medical Research Council

Wellcome Trust

British Heart Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3