Potential local adaptation of corals at acidified and warmed Nikko Bay, Palau

Author:

Kurihara Haruko,Watanabe Atsushi,Tsugi Asami,Mimura Izumi,Hongo Chuki,Kawai Takashi,Reimer James Davis,Kimoto Katsunori,Gouezo Marine,Golbuu Yimnang

Abstract

AbstractOcean warming and acidification caused by increases of atmospheric carbon dioxide are now thought to be major threats to coral reefs on a global scale. Here we evaluated the environmental conditions and benthic community structures in semi-closed Nikko Bay at the inner reef area in Palau, which has high pCO2 and seawater temperature conditions with high zooxanthellate coral coverage. Nikko Bay is a highly sheltered system with organisms showing low connectivity with surrounding environments, making this bay a unique site for evaluating adaptation and acclimatization responses of organisms to warmed and acidified environments. Seawater pCO2arag showed strong gradation ranging from 380 to 982 µatm (Ωarag: 1.79–3.66), and benthic coverage, including soft corals and turf algae, changed along with Ωarag while hard coral coverage did not change. In contrast to previous studies, net calcification was maintained in Nikko Bay even under very low mean Ωarag (2.44). Reciprocal transplantation of the dominant coral Porites cylindrica showed that the calcification rate of corals from Nikko Bay did not change when transplanted to a reference site, while calcification of reference site corals decreased when transplanted to Nikko Bay. Corals transplanted out of their origin sites also showed the highest interactive respiration (R) and lower gross photosynthesis (Pg) to respiration (Pg:R), indicating higher energy acquirement of corals at their origin site. The results of this study give important insights about the potential local acclimatization and adaptation capacity of corals to different environmental conditions including pCO2 and temperature.

Funder

Japan International Cooperation Agency

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3