Author:
Kumi-Barimah E.,Penhale-Jones R.,Salimian A.,Upadhyaya H.,Hasnath A.,Jose G.
Abstract
AbstractIn this paper, we report anatase and rutile titanium oxide (TiO2) nanoparticulate thin films fabricated on silica and Indium Tin Oxide (ITO) substrates using femtosecond pulsed laser deposition (fs-PLD). Depositions were carried-out at substrate temperatures of 25 °C, 400 °C and 600 °C from anatase and rutile phase target materials. Effect of substrate temperature on the surface morphology, microstructural, optical, and electrical properties of these films were systematically investigated by using various range of measurements such as scanning electron microscopy, (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, Ultraviolet–visible-near infrared (UV–Vis–NIR) spectroscopy, and Hall Effect measurements. It is observed that the TiO2 thin films surface are predominated with nanoparticulates of diameter less 35 nm, which constitute about ~ 70%; while the optical bandgaps and electrical resistivity decrease with increasing substrate temperature. A mixed-phase (anatase/rutile) TiO2 thin film was produced at a substrate temperature of 400 °C when samples are fabricated with anatase and rutile target materials. The results of this study indicate that the structural and crystallinity, optical, and electrical properties can be controlled by varying fs-PLD process parameters to prepare TiO2 thin films, which are suitable for applications in photovoltaics, solar cells, and photo-catalysis.
Funder
Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献