Cascading effects of drought in Xilin Gol temperate grassland, China

Author:

Ma Jingzhao,Gao Jingmin

Abstract

AbstractIn the context of global climate change, the cascading risk of compound natural hazards is becoming increasingly prominent. Taking Xilin Gol grassland as study area, we used the Mann–Kendall trend method, the maximum Pearson correlation coefficient method, and Partial least squares structural equations modeling to detect the characteristics of spatiotemporal pattern changes of the three types of droughts. The propagation characteristics and the cascade effects among the three types of droughts was also identified. The standardized precipitation evapotranspiration index, standardized evapotranspiration drought index, and soil moisture index were selected as indicators of meteorological drought, ecohydrological drought, and soil drought, respectively. The results show that the warm and dry trend in Xilin Gol grassland was obvious in the past 30 years. The seasonal propagation of different drought was prominent, with stronger spread relationships in summer. Persistent meteorological drought was more likely to trigger the other two types of droughts. The intensity and range both increased during the propagation from meteorological drought to ecohydrological drought. The cascade effect was differed in different time scales. The multi-year persistent climatic drought has an overwhelming cascade effect on soil drought and ecohydrological drought. For seasonal or annual drought, vegetation cover change has an amplifying or mitigating impact on the cascade effect, where soil moisture, evapotranspiration (ET), and their relationship all play important roles. In eastern areas with better vegetation cover, the reduction of vegetation in the early stage aggravated the cascading effect of meteorological drought to ecohydrological drought through reducing ET. In the northwestern sparsely vegetated areas, ET was mainly influenced by meteorological factors, and the cascade effect of meteorological factors to ecohydrological drought was more obvious than that of soil drought.

Funder

National Natural Science Foundation of China Science Foundation of China

National Key Research and Development Program of China Stem Cell and Translational Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3