Synthesis of activated carbon composited with Egyptian black sand for enhanced adsorption performance toward methylene blue dye

Author:

Elkholy Ahmed Salah,Yahia Mohamed SaberORCID,Elnwawy Mohamed AbdelsameiORCID,Gomaa Hosny AnwarORCID,Elzaref Ahmed ShafekORCID

Abstract

AbstractThe present study reports the feasibility of the synthesis of a novel porous composite adsorbent, prepared from olive stone activated carbon (OS400) and garnet (GA) mineral impregnations (referred to as OSMG). This composite (OSMG) was applied for its ability to adsorb a macromolecular organic dye. The composite’s structural characteristics were evaluated using various techniques such as Brunauer–Emmett–Teller (BET), Scanning Electron Microscopy equipped with Energy Dispersive X-ray spectroscopy (SEM–EDX), X-ray diffraction (XRD), and a Fourier transform infrared spectrometer (FT-IR). The specific surface area of the garnet (GA), (OS400), and (OSMG) were found to be 5.157 mg⋅g−1, 1489.598 mg⋅g−1, and 546.392 mg⋅g−1, respectively. The specific surface area of the new composite (OSMG) was promoted to enhance the adsorption of methylene blue (MB). Experiments were conducted under various conditions, including contact time, initial dye concentration, adsorbent dosage, pH, and temperatures. Data from these experiments were analyzed using several adsorption models including Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich (D-R). The results indicated that, the adsorption fit best with the Freundlich model and that the adsorption process followed a pseudo-second-order kinetic mechanism. Additionally, the thermodynamic analysis indicated the adsorption of MB onto garnet(GA) adsorbents is endothermic, while the sorption onto (OS400) and (OSMG) is an exothermic and non-spontaneous process. The OSMG composite can be used for at least five cycles without significant loss of adsorptive performance, and can easily be separated from the water after treatment.

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3