Author:
Zaid Osama,Ahmad Jawad,Siddique Muhammad Shahid,Aslam Fahid,Alabduljabbar Hisham,Khedher Khaled Mohamed
Abstract
AbstractToday, it’s getting harder to find natural resources for concrete production. Utilization of the waste materials not just helps in getting them used in concrete, cement, and other construction materials, but also has various secondary advantages, for example, saving in energy, decrease in landfill cost, and protecting climate from pollution. Considering this in the development of modern structural design, utilizing waste materials instead of natural aggregate is a good option to make concrete that is sustainable and eco-friendly. The present research aims to find the impact of adding glass fiber into sustainable concrete made with silica fume, as a partial replacement of cement, and coconut shell added with different ratios as a replacement of coarse aggregate, on concrete mechanical and durability aspects. Various blends were made, with coconut shell as a substitution of coarse aggregates with different ratios. Portland cement was substituted with silica fume at 5%, 10%, 15%, and 20% by cement weight in all concrete blends. The volume ratios of glass fibers utilized in this study were 0.5%, 1.0%, 1.5% and 2.0%. Adding glass fibers increases concrete density to some extent and then marginally reduces the density of coconut shell concrete. When the percentage of glass fibers increases, the compressive, flexural and split tensile strength of coconut shell concrete also increases. From the lab results and SEM images of the present research display that glass fibers might be utilized in coconut shell concrete to enhance its mechanical and durability attributes, to accomplish sustainable concrete with acceptable strength with ease.
Publisher
Springer Science and Business Media LLC
Reference38 articles.
1. Ahmad, J. et al. Mechanical and durability characteristics of sustainable concrete modified with partial substitution of waste foundry sand. Struct. Concr. 9, 6521–6532 (2021).
2. Ramezanianpour, A. A., Mahdikhani, M. & Ahmadibeni, G. The effect of rice husk ash on mechanical properties and durability of sustainable concretes. IJCE 7, 83–91 (2009).
3. Ali, M. Coconut fibre: A versatile material and its applications in engineering. J. Civ. Eng. Constr. Technol. 2, 189–197 (2011).
4. Ahmad, J. et al. A step towards sustainable self-compacting concrete by using partial substitution of wheat straw ash and bentonite clay instead of cement. Sustainability 13, 824 (2021).
5. Dilbas, H., Çakır, Ö. & Yıldırım, H. An experimental investigation on fracture parameters of recycled aggregate concrete with optimized ball milling method. Constr. Build. Mater. 252, 119118 (2020).
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献